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Let X be a compact topological space and C(X) the space of continuous
real functions on X with norm

1kl = sup{l h(x): x € X ).

Let {g,..., g&,} be a linearly independent subset of C(X) and define

P(c, x) = ‘\: c; (x).

i=1

Let ¢ be a fixed non-negative integer. The approximation problem is, given
JS€ C(X), to find c* which minimizes ||r(c, -)|, where the residual r is r(x) =
P(c, x) — f(x) subject to the constraint

PO, -) > 0. (*)

¢ = 0 corresponds to positive approximation. £ = | corresponds to monotone
approximation. ¢ = 2 corresponds to convex approximation. We assume that
there is at least one approximation satisfying the constraint.

At little extra cost we consider a slight generalization. Let u be a given
element of C(X) and let the constraint be

PO%, ) >u.

Choosing u = f and { =0 gives us one-sided approximation from above.

Best approximation on finite X can be determined by linear programming,
as the objective function is as for Chebyshev approximation and the
constraints are linear: see Rabinowitz [4]. We consider approximation on
infinite X. We use a generalization of the first algorithm of Remez, described
in the text of Cheney [2, p. 96]. For convenience we define

Q(e, x) = P"(c, x) — u(x).
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First Algorithm of Remez

(i) Choose a finite subset X’ on which {g,,..., g,} is independent and
set k= 1.

ii) Find a best approximation P(c, -) to f (subject to the constraint)
A Y
on X"
(iii) Find a maximum x* of |r(c*, -)| on X.
(iv) Find a minimum y* of Q(c*, -) on X.
(v) Let X**'=Xx*UxkU pk
(vi) Add I to k and go to (ii).

Following Cheney we define
A¥(c) = max |{r(c, x)|: x € X*},
A(c) = r(e, )l

THEOREM. 4X(c*) T p=infA(c) over c satisfying the constraint. The
sequence {c*} is bounded and its accumulation points minimize A subject to
the constraint.

Proof. The arguments of Cheney show that {c*} is bounded. Let b be an
accumulation point, say c*? - b,

ASSERTION. Q(b, ) > 0.

Proof of assertion. Llet y, be an accumulation point of y*“’, assume
y* = y° by taking a subsequence if necessary. As Q(ck,.) converges
uniformly to Q(b, ) and y* is a minimum of Q(c, -), »° must be a minimum
of Q(c* -), »* must be a minimum of Q(b, -). Suppose Q(b, °) < —¢; then
for all j sufficiently large

Q(ck(j)+l’ yk(j)) < —¢

which contradicts choice of ¢ *! and proves the assertion.

The proof of Cheney can be used to complete the proof.

A generalization of the problem is restricted derivative approximation, in
which the constraint is u < p’(c, -) < v. The case ¢ = 0 is the classical case
of restricted range approximation. The algorithm is modified to also choose
z, maximizing P“(c*, -) — v on X and letting X**' = X*Ux* U y* U z* In
the same way that we proved Q(b, -) >0, it is shown that P(b,-) — v 0.
and the arguments of Cheney apply as before.

For either the algorithm or its generalization above, the convergence proof
still applies if we let X**' > X* U x* U y¥(Uz*) permitting us to add near
maxima or minima to possibly speed up convergence.
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It should be noted that Lewis [3] has used discretization [2, p. 84} to
approximate under constraint () and Chalmers [1] has given a variant of
the Remez exchange algorithm for approximation with linear restrictions.

Note added in proof. After this paper was written, the author found two papers |5, 6] of
Watson on special cases of the problem. The paper [7] of Watson discussed the algorithm
without constraints.
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