Chebyshev Approximation with Non-Negative Derivative

CHARLES B. DUNHAM

Computer Science Department, University of Western Ontario, London, Ontario N6A 5B9, Canada

Communicated by T. J. Rivlin

Received April 25, 1980

Let X be a compact topological space and C(X) the space of continuous real functions on X with norm

$$||h|| = \sup\{|h(x)|: x \in X\}.$$

Let $\{g_1, ..., g_n\}$ be a linearly independent subset of C(X) and define

$$P(c, x) = \sum_{i=1}^{n} c_i g_i(x).$$

Let ℓ be a fixed non-negative integer. The approximation problem is, given $f \in C(X)$, to find c^* which minimizes $||r(c, \cdot)||$, where the residual r is r(x) = P(c, x) - f(x) subject to the constraint

$$P^{(\ell)}(c, \cdot) \ge 0. \tag{(*)}$$

 $\ell = 0$ corresponds to positive approximation. $\ell = 1$ corresponds to monotone approximation. $\ell = 2$ corresponds to convex approximation. We assume that there is at least one approximation satisfying the constraint.

At little extra cost we consider a slight generalization. Let u be a given element of C(X) and let the constraint be

$$P^{(\ell)}(c, \cdot) \geq u.$$

Choosing u = f and $\ell = 0$ gives us one-sided approximation from above.

Best approximation on finite X can be determined by linear programming, as the objective function is as for Chebyshev approximation and the constraints are linear: see Rabinowitz [4]. We consider approximation on infinite X. We use a generalization of the first algorithm of Remez, described in the text of Cheney [2, p. 96]. For convenience we define

$$Q(c, x) = P^{(l)}(c, x) - u(x).$$

First Algorithm of Remez

(i) Choose a finite subset X' on which $\{g_1,...,g_n\}$ is independent and set k = 1.

(ii) Find a best approximation $P(c^k, \cdot)$ to f (subject to the constraint) on X^k .

(iii) Find a maximum x^k of $|r(c^k, \cdot)|$ on X.

- (iv) Find a minimum y^k of $Q(c^k, \cdot)$ on X.
- (v) Let $X^{k+1} = X^k \cup x^k \cup y^k$.
- (vi) Add 1 to k and go to (ii).

Following Cheney we define

$$\Delta^{k}(c) = \max |\{r(c, x)| : x \in X^{k}\},$$

$$\Delta(c) = ||r(c, \cdot)||.$$

THEOREM. $\Delta^k(c^k) \uparrow p = \inf \Delta(c)$ over c satisfying the constraint. The sequence $\{c^k\}$ is bounded and its accumulation points minimize Δ subject to the constraint.

Proof. The arguments of Cheney show that $\{c^k\}$ is bounded. Let b be an accumulation point, say $c^{k(j)} \rightarrow b$.

Assertion. $Q(b, \cdot) \ge 0$.

Proof of assertion. Let y_0 be an accumulation point of $y^{k(j)}$, assume $y^{k(j)} \rightarrow y^0$ by taking a subsequence if necessary. As $Q(c^{k(j)}, \cdot)$ converges uniformly to $Q(b, \cdot)$ and y^k is a minimum of $Q(c^k, \cdot)$, y^0 must be a minimum of $Q(c^k, \cdot)$, y^0 must be a minimum of $Q(b, \cdot)$. Suppose $Q(b, y^0) < -\varepsilon$; then for all j sufficiently large

$$Q(c^{k(j)+1}, y^{k(j)}) < -\varepsilon$$

which contradicts choice of $c^{k(j)+1}$ and proves the assertion.

The proof of Cheney can be used to complete the proof.

A generalization of the problem is restricted derivative approximation, in which the constraint is $u \leq p^{(\ell)}(c, \cdot) \leq v$. The case $\ell = 0$ is the classical case of restricted range approximation. The algorithm is modified to also choose z_k maximizing $P^{(\ell)}(c^k, \cdot) - v$ on X and letting $X^{k+1} = X^k \cup x^k \cup y^k \cup z^k$. In the same way that we proved $Q(b, \cdot) \geq 0$, it is shown that $P(b, \cdot) - v \leq 0$, and the arguments of Cheney apply as before.

For either the algorithm or its generalization above, the convergence proof still applies if we let $X^{k+1} \supset X^k \cup x^k \cup y^k(\cup z^k)$ permitting us to add near maxima or minima to possibly speed up convergence.

CHARLES B. DUNHAM

It should be noted that Lewis [3] has used discretization [2, p. 84] to approximate under constraint (*) and Chalmers [1] has given a variant of the Remez exchange algorithm for approximation with linear restrictions.

Note added in proof. After this paper was written, the author found two papers [5, 6] of Watson on special cases of the problem. The paper [7] of Watson discussed the algorithm without constraints.

References

- 1. B. L. CHALMERS, The Remez exchange algorithm for approximation with linear restrictions, *Trans. Amer. Math. Soc.* 223 (1976), 103-131.
- 2. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
- 3. J. T. LEWIS, Computation of best monotone approximations, Math. Comp. 26 (1972), 737-747.
- 4. P. RABINOWITZ, Mathematical programming and approximation, in "Approximation Theory" (A. Talbot, Ed.), pp. 217–231, Academic Press, New York/London, 1970.
- 5. G. A. WATSON, On the best linear one-sided Chebyshev approximation, J. Approx. Theory 7 (1973), 48-58.
- 6. G. A. WATSON, The calculation of best restricted approximations, SIAM J. Numer. Anal. 11(1974), 693-699.
- 7. G. A. WATSON, A multiple exchange algorithm for multivariate Chebyshev approximation, SIAM J. Numer. Anal. 12 (1975), 46-52.